MMAT5010 Linear Analysis (2024-25): Homework 6 Deadline: 15 Mar 2025

Important Notice:

 \clubsuit The answer paper must be submitted before the deadline.

 \blacklozenge The answer paper MUST BE sent to the CU Blackboard.

- 1. (a) Let $\|\cdot\|$ and $\|\cdot\|'$ be equivalent norm functions on a vector space V. Show that if $(V, \|\cdot\|)$ is separable, then so is $(V, \|\cdot\|')$.
 - (b) Show that every finite dimensional normed space is separable.
- 2. Assume that \mathbb{R}^2 is endowed with the usual norm, that is $||(x_1, x_2)|| := \sqrt{x_1^2 + x_2^2}$ for $(x_1, x_2) \in \mathbb{R}^2$. Define $T : \mathbb{R}^2 \to (\mathbb{R}^2)^*$ by

$$T(v)(w) := v_1 w_1 + v_2 w_2$$

for $v = (v_1, v_2)$ and $w = (w_1, w_2)$ in \mathbb{R}^2 . Show that T is linear isometric isomorphism.

* * * End * * *